SET	A

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2022 CHEMISTRY (043)

CLASS: XI Max. Marks: 70

		MARKING SCHEME				
SET	QN.NO	VALUE POINTS	MARKS			
		SECTION A				
A	1	(d) Unbinilium	1			
A	2	(d) Intermolecular hydrogen bonding	1			
A	3	(c) 1 m	1			
A	4	(c) node	1			
A	5	(b) $3s^2 3p^5$	1			
A	6	(c) 4.8176×10^{23} atoms	1			
A	7	(b) 0	1			
A	8	(b) Trigonal pyramidal	1			
A	9	(a) F	1			
A	10	(a) 200 L	1			
A	11	(a) [Ar] $3d^5 4s^1$	1			
A	12	(c) 0.12 M	1			
A	13	(b) 2py and 2py	1			
A	14	$(c) d_z^2, d_x^2 - y^2$	1			
A	15	(D)	1			
A	16	(A)	1			
A	17	(C)	1			
A	18	(D)	1			
	SECTION B					
A	19	Moles of HCl = 10^{-4} mol - 1 Molecules = 10^{-4} x 6.022 x 10^{23} = 6.022 x 10^{19} - 1	2			
A	20	(i) 3d orbitals have higher energy. Based on n+1 rule: for 3d, n+l value =5 and for 4s n+l value = 4. The orbital with lower n+l value have lower enegy	1+1			

		(ii) It is impossible to determine the exact position and exact momentum of an		
	electron simultaneously and accurately.			
		OR		
		(a) Bohr radius = $(52.9 \times 2^2) \div Z \text{ pm}$		
		$= (52.9 \text{ x } 4) \div 2 = 105.8 \text{ pm}$		
		(b) Pauli's Exclusion rule statement		
A	21	MO configuration – 1	2	
11	21	$BO - 2 - \frac{1}{2}$	2	
		Paramagnetic $-\frac{1}{2}$		
A	22	(i) HF is more polar as compared to HCl because F is more electronegative than	1+1	
7 1	22	Cl. Greater the difference in electronegativity, more will be polarity, higher will	111	
		be dipole moment.		
		(ii) Resonance structures of CO ₃ ² -		
	23	(a) Cs, large size $-\frac{1}{2} + \frac{1}{2}$	1+1	
	23	(a) Cs, rarge size $-72 + 72$ (b) Period = 4 Group = 9 - $\frac{1}{2} + \frac{1}{2}$	1+1	
		(b) Ferrod = 4 Group = 9 - $\frac{72 + \frac{72}{2}}{0R}$		
		(i) It is due to stable electronic configuration of noble gases and because of inter		
		electronic repulsion, addition of electrons require energy		
		(ii) In case of N electron has to be removed from half filled orbitals hence more		
_	24	energy is required leading to the higher value of ionization enthalpy of nitrogen		
A	24	Molality = 0.32 x 1000/0.68 x 18 = 26.14 m - 2	2	
A	25	(i) Small size, high charge /radius ratio (or) polarizing power, high	1+1	
		electronegativity, absence of d-orbitals – any two - 1		
		(ii) any two correct properties		
		SECTION C		
	26	(i) KE = 0	3	
		$hv-hv_0=0$		
		$v = v_0$		
		$v = c/\Lambda = 4.41 \times 10^{14} \text{ s}^{-1}$		
		$hv_0 = 6.626 \times 10^{-34} \times 4.41 \times 10^{14} = 2.92 \times 10^{-19} \text{ J}$		
	27	(a) Lewis structure	1+1+1	
		(b) $MgCl_2 - \frac{1}{2}$		
		Smaller size and greater charge $-\frac{1}{2}$		
		(c) Bond length is defined as the equilibrium distance between the nuclei of two		
		bonded atoms in a molecule.		
		OR		
		(i) σ bond is stronger. This is because σ bond is formed by head on overlapping		
		of atomic orbitals and therefore overlapping is large. Whereas π bond is formed		
		by sideways overlapping.		
		(ii) GaCl ₃ – ½		
		Greater charge $-\frac{1}{2}$		
		(iii) Bond angle is defined as the angle between the orbitals containing bonding		
		electron pairs around the central atom in a molecule.		
		election pairs around the central atom in a molecule.		

A	28	(i) $\Delta v = 0.001\%$ of velocity of electron = $(0.001 \text{ x } 300) \div 100$ = $3 \text{ x } 10^{-3} \text{ ms}^{-1}$ $m_e = 9.1 \text{ x } 10^{-31} \text{ kg}$ $h = 6.626 \text{ x } 10^{-34}$ $\Delta x = h \div (4\pi m \Delta v) = 1.945 \text{ x } 10^{-2} \text{ m}$				3		
A	29	Element	%	Atomic mass	Moles	Mole ratio	Simplest ratio	3
		<u> </u>	<i>57</i> 0	12	4.92	2	1	
		С	57.8 3.6	12	4.82 3.6	1.49	3	
		О		1			2	
		0	38.6	16	2.41	1	2	
		Empirical formula Molecular formula Mole of ,methan Molarity = 1.87	$ula = 2 (C_4)$ $nol = 60/32$	$(H_3O_2) = C_8H$ $(C_1) = C_1.875$	604 OR			
A	30	(i) 7 – 1						3
		(ii) 10 – 1						
		(iii) 8 - 1						
A	31	(i) Lyman series definition - 1 (ii) Wavenumber = $8.227 \times 10^4 \text{ cm}^{-1}$ - 1 (iii) mvr = nh/2 π $2\pi r = \text{nh/mv}$ de-broglie wavelength $\hat{k} = \text{h/mv}$ from (1) and (2)				1+1+2		
		$2\pi r = n\Lambda - 2$						
		OR						
	Bohr's equation for helium ion $-\frac{1}{2}$ Substitution $-\frac{1}{2}$							
<u> </u>	22	Enthalpy = $8.72 \times 10^{-18} \text{ J} - 2$ (i) Hybridization definition - 1					1 . 1 . 2	
A	32	•						1+1+2
		(ii) sp ³ d ² and octahedral - ½ + ½ (iii) Orbital overlap diagram - 2						
		(III) Olollal ove	riup diagra		OR			
		Any 2 condition	ıs	·				
A	33	(a) Period trend and reason – 1					5	
		Group trend						
		(b) $F - \frac{1}{2}$ small	size and in	terelectronic	repulsion -	1		
		(c) Definition of		-				
		Any two species	s which is	isoelectronic	with Ca ²⁺ -	1/2 + 1/2		
A	34	(a) Energy level diagram – 1 5				5		
		Orbital overlap	diagram –	1				

		Shape of the hybridised orbital – ½			
		$Sp2 - \frac{1}{2}$			
		(b) XeF ₄ – square planar – 1			
		BrF ₃ - T shape			
		OR			
		(a) Graph $-1 BE - \frac{1}{2} BL - \frac{1}{2}$			
		Explanation - 1			
		(b) (b) XeO ₄ – tetrahedral – 1			
		IF ₄ ⁻ - square planar - 1			
A	35	(i) Black body- definition -1	5		
		(ii) $E = hv = hc/\Lambda = 3.98 \times 10^{-15} J - 1$			
		(iii) Correct shapes 1 + 1			
		(iv) $n = 4$, $l = 0$, $ml = 0$, $s = anyone - 1$			
		OR			
		(a) Hund's rule - 1			
		(ii) Explains about orientation - 1			
		(iii) 4 - 1			
		(iv) $2.25 \times 10^2 \text{ nm}$			
В	1	(b) IR	1		
В	2	(d) Aufbau principle	1		
В	3	(b) o-nitrophenol	1		
В	4	(c) 0.005 M	1		
В	5	(b)12	1		
В	6	(c) ClF ₃	1		
В	7	(d) 2	1		
В	8	(c) Representative elements	1		
В	9	(b) 0.875 M	1		
В	10	(b) Molarity	1		
В	11	(b)	1		
В	12	(d)	1		
В	13	(a)	1		
В	14	(c) 1.806×10^{23}	1		
В	15	(A)	1		
В	16	(C)	1		
В	17	(D)	1		
В	18	(D)	1		
В	19	(i) Limiting reactant definition – 1	2		
		(ii) Volume of ammonia produced = 200 L - 1			
В	20	(i) [Ar]3d ⁹ - 1	2		
		(ii) Photo electric effect definition - 1			
		OR			

		(a) Energy associated with first orbit of $Li^{2+} = -1.962 \times 10^{-17} \text{ J} - 1$				
		(b) Stark effect – splitting of spectral line in electric field - 1				
В	21	MO configuration – 1	2			
		$BO - 2 - \frac{1}{2}$				
		Paramagnetic – ½				
В	22	(i) In NH ₃ the bond dipoles and lone pair dipole act in same direction where as in	2			
		NF_3 the bond dipoles and lone pair dipole act in opposite directions – 1				
		(ii) Resonance structures of NO ₃ - 1				
В	25	(a) Van der waal's redius def – 1	2			
		(b) N, Cl, O, F - 1				
В	26	$\Lambda = h/mv$	3			
		$\Lambda = 4.8 \times 10^{-12} \text{m}$				
		$v = 1.516 \times 10^8 \text{m/s}$				
		$K.E = \frac{1}{2} mv^2$				
		$K.E = 1.046 \times 10^{-14} J$				
В	30	(i) 5–1	3			
		(ii) 14 – 1				
		(iii) 8 – 1				
В	31	(i) Balmer series definition -1	4			
		(ii) Wavenumber = $1.523 \times 10^4 \text{ cm}^{-1} - 1$				
		(iii) $mvr = nh/2\pi$				
		$2\pi r = nh/mv$				
		de-broglie wavelength $\hat{h} = h/mv$				
		from (1) and (2)				
		$2\pi r = n\Lambda$ - 2				
		OR				
		Bohr's equation for helium ion $-\frac{1}{2}$				
		Substitution $-\frac{1}{2}$				
		Enthalpy = $8.72 \times 10^{-18} \text{J} - 2$				
В	33	(a) Period trend and reason – 1				
		Group trend and reason – 1				
		(b) $F - \frac{1}{2}$ small size and interelectronic repulsion - 1				
		(c) Definition of isoelectronic species – ½				
	2.5	Any two species which is isoelectronic with Mg^{2+} - $\frac{1}{2}$				
В	35	(iv) $n=3$, $l=0$, $ml=0$, $s=$ anyone -1				
		(b) Energy and size - 1				