## INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2022 CHEMISTRY (043)

CLASS: XI
Max. Marks: 70

| MARKING SCHEME |  |  |  |
| :---: | :---: | :---: | :---: |
| SET | QN.NO | VALUE POINTS | MARKS |
|  |  | SECTION A |  |
| A | 1 | (d) Unbinilium | 1 |
| A | 2 | (d) Intermolecular hydrogen bonding | 1 |
| A | 3 | (c) 1 m | 1 |
| A | 4 | (c) node | 1 |
| A | 5 | (b) $3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$ | 1 |
| A | 6 | (c) $4.8176 \times 10^{23}$ atoms | 1 |
| A | 7 | (b) 0 | 1 |
| A | 8 | (b) Trigonal pyramidal | 1 |
| A | 9 | (a) F | 1 |
| A | 10 | (a) 200 L | 1 |
| A | 11 | (a) $[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$ | 1 |
| A | 12 | (c) 0.12 M | 1 |
| A | 13 | (b) 2py and 2py | 1 |
| A | 14 | (c) $\mathrm{d}_{\mathrm{z}}{ }^{2}, \mathrm{~d}_{\mathrm{x}}{ }^{2}-\mathrm{y}^{2}$ | 1 |
| A | 15 | (D) | 1 |
| A | 16 | (A) | 1 |
| A | 17 | (C) | 1 |
| A | 18 | (D) | 1 |
|  |  | SECTION B |  |
| A | 19 | $\begin{aligned} & \text { Moles of } \mathrm{HCl}=10^{-4} \mathrm{~mol}-1 \\ & \text { Molecules }=10^{-4} \times 6.022 \times 10^{23}=6.022 \times 10^{19}-1 \end{aligned}$ | 2 |
| A | 20 | (i) 3d orbitals have higher energy. <br> Based on $n+1$ rule: for $3 d, n+1$ value $=5$ and for $4 s n+1$ value $=4$. <br> The orbital with lower $n+1$ value have lower enegy | $1+1$ |


|  |  | (ii) It is impossible to determine the exact position and exact momentum of an <br> electron simultaneously and accurately. <br> OR |  |
| :--- | :--- | :--- | :--- |
| (a) Bohr radius $=\left(52.9 \times 2^{2}\right) \div \mathrm{Z} \mathrm{pm}$ |  |  |  |
| $=(52.9 \times 4) \div 2=105.8 \mathrm{pm}$ |  |  |  |
| (b) Pauli's Exclusion rule statement |  |  |  |$\quad$| A |
| :--- |


| A | 28 |  |  |  |  |  |  | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 29 | Element  <br>   <br> C  <br> H  <br> O  | \% | Atomic mass | Moles | Mole <br> ratio | Simplest ratio | 3 |
|  |  |  | 57.8 | 12 | 4.82 | 2 | 4 |  |
|  |  |  | 3.6 | 1 | 3.6 | 1.49 | 3 |  |
|  |  |  | 38.6 | 16 | 2.41 | 1 | 2 |  |
|  |  | Empirical formula $=\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2}$ <br> Molecular formula $=2\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2}\right)=\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}$ <br> OR <br> Mole of ,methanol $=60 / 32=1.875$ <br> Molarity $=1.875 / .5=3.75 \mathrm{M}$ |  |  |  |  |  |  |
| A | 30 | (i) $7-1$ <br> (ii) $10-1$ <br> (iii) 8-1 |  |  |  |  |  | 3 |
| A | 31 | (i) Lyman series definition - 1 <br> (ii) Wavenumber $=8.227 \times 10^{4} \mathrm{~cm}^{-1}-1$ <br> (iii) $\mathrm{mvr}=\mathrm{nh} / 2 \pi$ <br> $2 \pi \mathrm{r}=\mathrm{nh} / \mathrm{mv}$ <br> de-broglie wavelength $K=\mathrm{h} / \mathrm{mv}$ <br> from (1) and (2) $2 \pi \mathrm{r}=\mathrm{n} \Lambda \quad-2$ <br> Bohr's equation for helium ion $-1 / 2$ <br> Substitution $-1 / 2$ <br> Enthalpy $=8.72 \times 10^{-18} \mathrm{~J} \quad-2$ |  |  |  |  |  | $1+1+2$ |
| A | 32 | (i) Hybridization definition - 1 <br> (ii) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ and octahedral $-1 / 2+1 / 2$ <br> (iii) Orbital overlap diagram -2 <br> Any 2 conditions |  |  |  |  |  | 1+1+2 |
| A | 33 | (a) Period trend and reason -1 Group trend and reason - 1 <br> (b) F - $1 / 2$ small size and interelectronic repulsion - 1 <br> (c) Definition of isoelectronic species $-1 / 2$ <br> Any two species which is isoelectronic with $\mathrm{Ca}^{2+}-1 / 2+1 / 2$ |  |  |  |  |  | 5 |
| A | 34 | (a) Energy level diagram - 1 <br> Orbital overlap diagram - 1 |  |  |  |  |  | 5 |


|  |  | Shape of the hybridised orbital $-1 / 2$ Sp2-1/2 <br> (b) $\mathrm{XeF}_{4}$ - square planar -1 <br> $\mathrm{BrF}_{3}-\mathrm{T}$ shape <br> (a) Graph - $1 \mathrm{BE}-1 / 2 \mathrm{BL}-1 / 2$ <br> Explanation-1 <br> (b) (b) $\mathrm{XeO}_{4}$ - tetrahedral - 1 <br> $\mathrm{IF}_{4}{ }^{-}$- square planar - 1 |  |
| :---: | :---: | :---: | :---: |
| A | 35 | (i) Black body- definition -1 <br> (ii) $\mathrm{E}=\mathrm{h} v=\mathrm{hc} / \mathrm{K}=3.98 \times 10^{-15} \mathrm{~J}-1$ <br> (iii) Correct shapes $1+1$ <br> (iv) $\mathrm{n}=4, l=0, \mathrm{~m} l=0, \mathrm{~s}=$ anyone -1 <br> OR <br> (a) Hund's rule - 1 <br> (ii) Explains about orientation - 1 <br> (iii) 4-1 <br> (iv) $2.25 \times 10^{2} \mathrm{~nm}$ | 5 |
| B | 1 | (b) IR | 1 |
| B | 2 | (d) Aufbau principle | 1 |
| B | 3 | (b) o-nitrophenol | 1 |
| B | 4 | (c) 0.005 M | 1 |
| B | 5 | (b) 12 | 1 |
| B | 6 | (c) $\mathrm{ClF}_{3}$ | 1 |
| B | 7 | (d) 2 | 1 |
| B | 8 | (c) Representative elements | 1 |
| B | 9 | (b) 0.875 M | 1 |
| B | 10 | (b) Molarity | 1 |
| B | 11 | (b) | 1 |
| B | 12 | (d) | 1 |
| B | 13 | (a) | 1 |
| B | 14 | (c) $1.806 \times 10^{23}$ | 1 |
| B | 15 | (A) | 1 |
| B | 16 | (C) | 1 |
| B | 17 | (D) | 1 |
| B | 18 | (D) | 1 |
| B | 19 | (i) Limiting reactant definition - 1 <br> (ii) Volume of ammonia produced $=200 \mathrm{~L}-1$ | 2 |
| B | 20 | (i) $[\mathrm{Ar}] 3 \mathrm{~d}^{9}-1$ <br> (ii) Photo electric effect definition - 1 <br> OR | 2 |


|  |  | (a) Energy associated with first orbit of $\mathrm{Li}^{2+}=-1.962 \times 10^{-17} \mathrm{~J}-1$ <br> (b) Stark effect - splitting of spectral line in electric field - 1 |  |
| :---: | :---: | :---: | :---: |
| B | 21 | $\begin{aligned} & \text { MO configuration - } 1 \\ & \text { BO }-2-1 / 2 \\ & \text { Paramagnetic }-1 / 2 \end{aligned}$ | 2 |
| B | 22 | (i) In $\mathrm{NH}_{3}$ the bond dipoles and lone pair dipole act in same direction where as in $\mathrm{NF}_{3}$ the bond dipoles and lone pair dipole act in opposite directions - 1 <br> (ii) Resonance structures of $\mathrm{NO}_{3}{ }^{-}-1$ | 2 |
| B | 25 | (a) Van der waal's redius def -1 <br> (b) N, Cl, O, F-1 | 2 |
| B | 26 | $\begin{aligned} & \mathrm{K}=\mathrm{h} / \mathrm{mv} \\ & K=4.8 \times 10^{-12} \mathrm{~m} \\ & \mathrm{v}=1.516 \times 10^{8} \mathrm{~m} / \mathrm{s} \\ & \mathrm{~K} . \mathrm{E}=1 / 2 \mathrm{mv}^{2} \\ & \mathrm{~K} . \mathrm{E}=1.046 \times 10^{-14} \mathrm{~J} \end{aligned}$ | 3 |
| B | 30 | (i) 5-1 <br> (ii) $14-1$ <br> (iii) $8-1$ | 3 |
| B | 31 | ```(i) Balmer series definition -1 (ii) Wavenumber \(=1.523 \times 10^{4} \mathrm{~cm}^{-1}-1\) (iii) \(\mathrm{mvr}=\mathrm{nh} / 2 \pi\) \(2 \pi r=n h / m v\) de-broglie wavelength \(K=\mathrm{h} / \mathrm{mv}\) from (1) and (2) \(2 \pi \mathrm{r}=\mathrm{n} \mathrm{K}-2\) OR Bohr's equation for helium ion \(-1 / 2\) Substitution - \(1 / 2\) Enthalpy \(=8.72 \times 10^{-18} \mathrm{~J} \quad-2\)``` | 4 |
| B | 33 | (a) Period trend and reason -1 <br> Group trend and reason - 1 <br> (b) $\mathrm{F}-1 / 2$ small size and interelectronic repulsion - 1 <br> (c) Definition of isoelectronic species $-1 / 2$ <br> Any two species which is isoelectronic with $\mathrm{Mg}^{2+}-1 / 2+1 / 2$ |  |
| B | 35 | (iv) $\mathrm{n}=3, \mathrm{l}=0, \mathrm{ml}=0, \mathrm{~s}=$ anyone -1 <br> (b) Energy and size - 1 |  |

